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A neglected source of uncertainty in
potential wind farm noise assessment
using the ETSU-R-97 process

By Rod Greenough, Emeritus Reader in Physics, University of Hull, and David Unwin, Emeritus Professor

in Geography, Birkbeck University of London

Introduction

The process outlined by the (UK) panel on wind turbine noise in
ETSU-R-97 (ETSU-R-97, 1996) has two key inputs, a prediction of
the turbine generated noise at selected receptors and survey data
on the background noise using the Lygp 10min weighted measure
established over a range of wind speeds referenced to 10m above
ground level (AGL). Since its formulation, this assessment process
has been criticised and, for better or worse, a suggested improve-
ment, the so-called ‘article’ method has been widely adopted (see
Bowdler, 2006, 2009; Bowdler ef al., 2009; Stigwood, 2011; REE
2012). To date the debate has been on the need to assess the
impact of high wind shear on both the extrapolated wind speeds
at hub height and the 10m AGL reference height in the height
range now spanned by turbines that are significantly larger (now
typically 80m AGL) than they were when ETSU-R-97 was defined.

Uncertainties relating to the turbine noise output and manu-
facturing tolerances (Broneske, 2009), the assumed ground
absorption, atmospheric attenuation, the accuracy and resolution
of the sound recording instruments, and their ability to filter
true background from noise induced by the wind itself have also
been considered and the related uncertainties in noise margins
(the difference between the predicted noise at a receptor site and
the allowed noise level according to ETSU) will be analysed in a
future publication.

Our principal concern here is prompted by a comparison of
several wind farm applications in which the applicants claim,
correctly, that the ETSU-R-97 regulations have been adhered to.
The problem arises when the recommended procedures for the
analysis of measured data reach the stage when the onus is on the
applicants to adopt reasonable and meaningful analytical
methods. Without employing models based on well-established
data analysis and statistical techniques, each applicant performs
regression analysis as a basis to determine the allowed ETSU noise
Jevels. After surveying many applications, it is evident that there is
a marked lack of consistency in these analyses. It is this source of
uncertainty, which arises from the models used by applicants in
the establishment of an average background noise curve as a
function of the 10m AGL wind (V;,), which is addressed in
this note.

Background: ETSU-R-97and the background
polynomials

ETSU-R-97 (page 101) outlines how the panel expected back-
ground curves for noise to be obtained as follows:

“For each sub-set, a “best fit” curve should be fitted to the data
using a least squares approach, usually a polynomial model (of no
more than 4" order). Where there is considerable scatter in the
data, it may be more appropriate to bin the acoustic data into Im/s
bins before identifying a best fit model. These two curves, referred to
as the ‘day-time curve’ and the ‘night-time curve, provide a charac-
terisation of the prevailing background noise level for day-and-
night respectively, as function of wind speed from zero to 12m/s at
10m height. Note that whatever model is used to describe the
measured data, this should not be extrapolated outside the range of
the measured wind speed data.”

Further we are also told that:

“The variation in background noise level with wind speed will
be determined by correlating Lygg, 10min 10IS€ measurements taken
over a period of time with the average wind speeds measured over

the same 10-minute periods and then fitting a curve to these daia”
The ETSU-R-97 advice most frequently followed is to fit a best

fit polynomial curve to the background noise data using the

standard ‘ordinary least squares’ (OLS) criterion of fit, which
under some well-understood assumptions provides the best linear
unbiased estimates for the coefficients that define this curve.

These fits have the general form Y= F(x) in whichY is the back-

ground sound level in dBA (ten-minute average) at a neighbouring

dwelling’s amenity area, x the measured or inferred wind speed at
10m AGL (V) at the wind turbine site, and F denotes ‘some
function.. It would seem that the ETSU-R-97 panel were of the
opinion that specification of a polynomial of up to the 4* degree
for F(x), coupled with the use of the phrase ‘best fit’ were suffi-
cient to ensure a reasonably objective and robust result on which
the planning process could rely. Fits to the observed data are

usually reported using the coefficient of determination, or K, a

statistic that is probably better thought of as the percentage of the

variance explained by the fitted curve. These curves are what here
we call models of the underlying data, but the guidance says very

Jitte about why these quite complex polynomials have been used,

or any caveats that should perhaps be attached to them, yet the

establishment of a reliable curve for the background noise is
critical for determining noise impact on neighbouring dwellings
and setting fair noise conditions to protect amenity.

At the outset, it is worth commenting on several statistical
issues that arise from this approach:

« The coefficients arrived at by so-called ordinary least squares
(OLS) multiple regression are themselves estimates of some
unknown parameters in the full population from which the
sample background (Lagg 10min) and wind (x, Vyo) were
sampled and as such are themselves subject to an uncertainty
that should be expressed as a confidence interval around the
plotted line;

« ETSU-R-97 assumes that the main driver for the observed
variation in background is wind speed and it is utterly reliant on
these plots and fitted functions. We have yet to read a justifica-
tion for the implied correlation either in theory or by means of
careful measurement at proper free field locations using
correctly shielded ground level microphones. At some sites the
major cause of variation in background might well be some
other process of which the regular hum of traffic close to a main
road is probably the most important example. Background in
such cases would correlate more closely with time of day and
wind direction than with wind speed;

« The ‘explained variance’ given by the R’ value refers to a statis-
tical notion of an ‘explanation’ that should not necessarily be
equated with scientific causation;

o Although we are advised that polynomials of degree higher than
four should not be used, this is without any additional comment
or justification and fifth order polynomial fits are not unknown:

o A major failing of ETSU-R-97 lies in the way that the measured
data are assumed to be unproblematic. They are not. Typically,
an Environmental Impact Statement (EIS) required by the Local
Planning Authority (LPA) will have an assessment of the likely
hoise nuisance at selected receptors for both ‘quiet daytime’
and ‘night-time’ conditions based on the established curve of
background noise plotted against Vo winds using observations

i 2t most 2 few weeks simultaneous recording of

both Ly s [@BA) at the receptors and Vi, (m/s) at theD




B wand farm site and either inferred from the wind profile at a
SSsh mast or measured using a meteorologically standard 10m

- mmast The uncertainties related to how the V10 derived from a

- mmast are ‘standardised’ have been well documented (Bowdler,
2005, but what is often forgotten is that these data are a usually

- & veny poor sample in both time and space. In time they are a
“smapshot of background noise for a very limited portion of the

- v==c an issue that REF (2012) demonstrate could introduce +/-

- Sd8A difference, and hence uncertainty, in the fitted curves;
= space, reliance on V;;, measure at a single point in what
Sypically will be a moderately large area of possibly highly
spatally varying wind regime introduces even more
wmcerainty that has yet to be quantified. Moreover, contamina-
“om of the data by transients will frequently occur and the
peossible influence of wind induced noise at inadequately
siislded microphones has yet to be resolved, giving yet
more uncertainty;
= WWhat is almost always forgotten is that this curve fitting

seocedure, using classical regression, that has been known and
sed since the mid-nineteenth century, assumes that the data
2= 2n independent random sample from a defined population
¢ possible values. The method evolved when, rather than being
= very large data file downloaded from an automatic recording
“=vice, each and every data point was likely to be hard won by
careful hand measurement;

- = Soth numbers, the background and the reference wind speed,
come from a time series sampled over ten-minute intervals. It is
“mevitable that such data will to a greater or lesser extent exhibit
“uio- or self- correlation. Autocorrelation can be understood by
= simple thought experiment. Suppose that at some time the
anemometer records a Vy, of 10m/s, what is the value likely to

- 5= in ten minutes time? Given that meteorological elements
<how persistence in time it is highly unlikely to be either 0 m/s
o say, 25m/s. Chances are that it will be fairly close to 10 m/s.
= other words successive data are correlated with themselves.
‘=t statistical inference assumes that each case is independent
or uncorrelated with the others. The effect on the result is to
Sias the standard error because the standard goodness of fit

- measures are tricked into believing that there is a larger sample
than actually exists. Larger samples give smaller standard errors
=nd better statistical significance;

Finally, the number of sample points (n) is not only large but is
o a very large extent arbitrary; it can be almost as large as the
=nalyst likes (for example by using more weeks data, or
cecreasing the sampling time interval), but the impact on the
statistical significance of any results is to make any change, not
matter how small, almost certain to pass the standard tests.
There is a real risk here of conflating the statistical notion of
“significance’ with the scientific one and it cannot be stressed
00 highly that they are not the same thing.

This is not the place to enter into a long exegesis of the
zssumptions of linear regression and their impacts on the fitted
es, nor do we argue for complete statistical purism: there are

~=rally millions of successful scientific studies that at some point
~=z=ak one or more of these assumptions.

“What we should point out is that regression was introduced as
= means by which specific scientific hypotheses, for example those
- ==nerated from physical reasoning, could be tested and/or cali-
‘=rated against observation of the real world. The ESU-R-97
ment and hence the process it mandates says absolutely
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nothing about the underlying physics of wind generated noise. At
no point in the ETSU document or anywhere else in the literature,
can we find any physical justification in physics, acoustics or
meteorology for the choice of model to be fitted. This has some
serious consequences for the reliability of the entire process.

Any background line will do?

In all the environmental impact statements (EIS) associated with
wind farm noise assessments we have examined what we find are
polynomial curves of degree p = 2 (quadratic), p = 3 (cubic),
sometimes p= 4 (quartic), and in one case even a degree p=5
(quintic) fitted to the background and wind data. The occasional
commentary in the text shows that the fitting process seems
almost always to be driven by an obsession with the idea best fit
being equivalent to ‘highest coefficient of determination, R, I can
get Table 1 illustrates the uncertainties this model choice intro-
duces into an assessment with results from various equations
used in the analysis of data (825 data points) from a recent wind
farm case.

Equation

Linear p=1 y = 1.7655x + 21.011 0.59
Quadratic p=2 y = 0.0312x* +1.3689x + 22.081 0.59
Cubic p=3 y = 0.0289 x* - 0.5175 x? + 4.3399x + 18.243 0.60
Quartic p=4 X;Tgé%()“gx‘ + 0.1585x°-1.6772x* + 8.2981x 0.61
Quintic p=5 %Eégéo)(()iBZ)izo%OBS&‘ - 0.9268x° + 4.1847x* - 0.62
Exponential y = 22.329 o= 0.61

Table 1; Results from various model fifs to background noise data and the
corresponding regression coefficients In these equation Y is the dependent
variable Laso 1omin (dBA) and the independent variable x is the inferred wind
speed at 10m AGL (m/s)

The polynomials of degree p = 2 or p = 3 are those that almost
certainly would have been accepted as appropriate models on
which to base the ETSU assessment, but we cannot resist pointing
out that an alternative, equally plausible, model that actually fits
the data better than all but the degree p = 5 polynomial is the
rather elegant exponential.

Unless this is to be a scientific hall of mirrors, which of these
models should be used in the assessment or will any curve do the
job just as well? All suggest that with no wind the background is
somewhere between Lygg 1 min = 14.558 and 24.408 dBA, which
seems reasonable for a quiet rural location, and all describe the
data reasonably well, giving coefficients of determination in the
range R = 0.59 — 0.62. We suspect that, faced with this choice and
secure in the knowledge that almost every planning decision
maker would accept their ‘professional judgment’, it would be a
brave acoustics consultant who did not chose the model that best
suited their employer’s objectives but statistical analysis and
physical logic can help a little in this choice.

One formal statistical option can be understood by the obser-
vation that straight line, degree p = 1, polynomial requires estima-
tion of two coefficients whereas the degree p = 5 quintic one
requires estimation of 6 for a gain in ‘explanation’ in the above
example of just 3% (=100 x (0.62-0.59)).  Statistically speaking,
there is a clear case here for an appeal to Occam’s Razor B3
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suggesting that the simplest model that is consistent with
the data is the one that should be fitted. As polynomials of
progressively higher degree are used they allow the curve to add
points of inflexion around which it can twist to accommodate the
observed data. Itis inevitable that this added flexibility will
increase the R and so in some sense be a ‘better fit, but the
danger is that of over-fitting, introducing features into the curve
that are artefacts solely of the degree of function chosen (p) and
have nothing to do with nature itself. It follows that the statistical
question that should be asked is NOT ‘is this new model of degree
p+1 a better fit to the data than the model of degree p, but given
that we have to estimate another coefficient, does this new model of
degree p+1 significantly improve on the fit given by the model of
degree p?’ This is a question well known in data analysis in general
and specifically to geostatisticians in the context of fitting polyno-
mial regressions, called trend surfaces, to the locational coordi-
nates of mapped information (see for example O’Sullivan and
Unwin, 2010, pages 279-287) and a simple analysis of variance
approach has been adopted to handle it. Applying this approach
to this case, what we find is that, even with such a large number of
data points, the addition of the quadratic is only just significant at
the 95% level (i.e. one chance in twenty of being wrong) , but not
at 99%. Similarly the very large, n, of strongly autocorrelated data
points made available by courtesy of the recording devices,
ensures that the cubic and higher order terms are also just statisti-
cally significant, but almost any statistician confronted with these
results would counsel caution and warn against over-fitting.

It should be stressed that in standard noise assessments any of
these models could have been presented, accepted as definitive,
and used to set what would have been asserted to be ETSU-R-97
compliant limits. Much of the difficulty that the approach defined
in ETSU-R-97 generates could be avoided by making it clear that
this step is one of model selection in which the objective is to
choose the model that gives the best predictions from a range of
possibilities. As computing power has increased, modern statisti-
cians have developed a number of strategies and measures for
precisely this purpose. Of these the Akaike Information Criterion
(see Akaike, 1974), which combines a measure of the model fit
with a penalty related to the number of parameters that have to be
estimated, is the best known and most widely used.

Using other regression diagnostics?
There are alternative ways of fitting curves to plots and there are
alternative regression diagnostics to the crude R* coefficient of
determination. Using a simple statistics package there is often the
facility to identify unusual observations that are either badly fitted
or that exercise undue influence (called their leverage, see Unwin
& Wrigley, 1987). Of interest in the context of model selection is
the distribution of unusual observations, something that is not
necessarily apparent from a visual examination of the plotted line
and the scatter of data points

For the linear fit, degree p = 1 polynomial in the example from
Table 1, the software we have used (MINITAB) identifies 86

unusual observations of which 32 are badly fitted having a high
standardised residual (the value divided by its standard deviation)
and 54 have undue influence on the fitted line indicated by a high
leverage. Of the badly fitted points the majority (24 from 32) have
negative residuals. Of rather more significance to our argument
are the 54 observations that exert undue leverage on the solution.
Leverage is also known by the phrase ‘distance to the centre of the
data’ and in the example this is very evident, but with a particular
bias towards observations at low winds. In fact 52 of these points
are at V;y winds less than 2.0m/s which leads directly to a very
important point of principle: although most assessments might
choose to ignore the data at low winds less than ‘cut in’ of the
turbine, these data have disproportionate importance in ffixing’ the
shape of the model fitted to the entire data set. In fact, the
behaviour of the model close to the V,(=0, no wind, axis is critical.
This is unfortunate, not least because in such very light air cup-
based anemometry is not very reliable and there may be issues
relating to the calibration, zeroing, and possible drift of the instru-
ments used.

As can be seen from an examination of the estimated coeffi-
cients, and the similarity in R, in Table 1 fitting the quadratic
makes very little difference and the same issues emerge. In this
case 89 observations are identified of which 30 are badly fitted and
59 now have undue influence on the fitted line indicated by a high
leverage. In passing, note that reliance on the linear curve gives
the possibility of departures at some time or other of up to +/-
10dBA which is a doubling or halving of the predicted sound level
from the curve

Appeals to logic?
We have already noted that, in the seeming absence of any theoret-
ical expected forms for these curves there is clearly a blind reliance
on getting a good fit as measured by the coefficient of determina-
tion, F*. However, even without the benefit of acoustic theory, we
can make some progress by appeals to simple logic and can illus-
trate this by a sequence of no less than three models offered in
response to various objections at another recent public inquiry,
again for the quiet daytime at an obviously at-risk receptor.

The initial attempt, shown here as Figure 1, used a simple
degree p= 2 quadratic with a plot showing all of the data down to
close to V,,=0 m/s, but did not report the R*

Degree p=2: Lygg 1omin = Y = 0.0587x* +0.5167x+ 30.548 dBA

Note that this suggests an arguably high background in a very
quiet rural area at V;,=0 m/s of Lygg 1gmin = 30.548dBA. Responding
to a query from the local environmental health officer, the next
attempt used a different method of referencing the winds to 10m
AGL and some additional survey data to produce the degree p=3
cubic model shown as Figure 2:

Degree p=3: Lygg 1gmin = Y = -0.0513x* + 1.1815x* - 6.1697x + 39.99 dBA (R’= 0.5551)
[ P40»

10 Minute L ., Sound Pressure Level (dB)

¥=005874 + 0.5167x + 30.548

0 2 4 3 & 10 12
10 Minute Average Windspeed (ms-) Measured at 10m Height

Figure 1: The quadratic model
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EIEEM At least this reports the rather modest fit that is inevitably
higher than that for the quadratic, but at what cost in logic do we
get this improvement? Notice that the introduction of a cubic
term (x°) into the equation means that we now allow the function
to have two points of inflection at which its curvature changes
from being concave upward (positive curvature) at low wind
speeds to concave downwards (negative curvature) at higher
speeds. What matters here isn’t whether or not the additional term
significantly improves the fit but whether or not it makes sense in
simple logic. It does not.

Many wind farm noise assessments argue that below the cut in
speed of the turbines (say 4m/s at hub height) the shape of these
curves is not important; in fact the behaviour of the function used
as it approaches and meets the background noise vertical Y-axis is
critical. There are two important physical considerations. First, the
intercept at the Y-axis represents the background noise at any
chosen site in the absence of wind. Logically, and from simple
physical considerations, when there is no wind we would expect
similar geographical locations scattered around the wind farm
turbines in the same area to have consistently similar values for
background noise. Second, we would expect the curve to flatten
steadily towards the same axis and, to have a zero gradient where it
meets the axis.

Neither of these conditions is met in the example shown in
Figure 2. First, at V;,= 0 m/s it predicts a background in the quiet
daytime hours at a site in a very quiet rural area of an extremely
unlikely Lagg 10min = 39-99dBA. Second, although the full extent of
this feature is hidden by the ‘blanking out’ on the plot of many of
these data from V; = 0 to around V,, = 3 m/s, it suggests that as
the wind increases so the background noise gets less, which is
equally unlikely. In our opinion both features, the high intercept
and the negative gradient, have nothing to do with nature and
everything to do with over-fitting a cubic model to data that do
not warrant it. Any cubic function will inevitably bend through
two points of inflection and that it is inevitable that this extra
freedom for bend will increase the goodness of fit as measured by
the R If a cubic function fitted by least squares doesn’t show two
points of inflection in the range of the data, logically it must be the
wrong function: a quadratic would have done the job just as well.
Finally, at a late stage in the planning process a third model that
attempted to correct some of these problems was offered and is
shown in Figure 3.

Degree p=3: Lygy jomin =Y = -0.021%" + 0.4936x° - 1.7502x + 31.703 dBA (K= 0.6766)

This has the same cubic shape as before and a better fit. Other
than the use of a properly estimated V,, wind and the fact that the
correlation seems to be improved we are not told anything more
about how it was derived. It can be seen that it removes all the
data for V;, speed below 2m/s so concealing the fact that once
again we have a negative gradient in this range. At Lygp 1omin =
31.703 dBA the background at V,,=0m/s once again appears on
the high side. ’

Does it matter?

Does it matter that in the range of wind speeds that are of concern
that we have different versions of the background curve that the
ETSU-R-97 process requires? For the various models listed in Table
1, atV,y = 5m/s the background curve value to be used in the

Model fitted Background at Vio=5m/s Lago 1omin (dB)
Polynomial, degree 1 25.35
Polynomial, degree 2 24.48
Polynomial, degree 3 24.10
Polynomial, degree 4 23.99

Table 2: Background noise Lagg 1o0mn (dBA), at V10=5m/s
Case 1

Model fitted

Initial Quadratic 34.60
Polynomial Degree 3, Model (2) 32.27
Polynomial Degree 3, Model (3) 32.67

Table 3: Background noise Lagg 1omin (dB), at V10=5m/s
Case 2

Background at V1g=5m/s Lagg 1omin (0B)

assessment is as is given as in Table 2

For the models presented in our second example in Section (5)
the equivalent background values are as in Table 3.

In both cases even at V;;=5.0m/s there is a range of background
values of around 1.4 - 2.0dBA in the Lyg omin, Which increases at
Vo lower than this and decreases asV,, increases above it. This
range has very little to do with nature and everything to do with
the choice of model fitted to the data. The uncertainty is less than
that reported as arising with different corrections for wind shear
(Stigwood, 2011) and, although modest, it could well be important
in any decision made with receptor sites that are marginal in the
ETSU-R-97guidance.

It should be stressed that any of these curves could well have
been used in determination of an application to build a wind farm
and/or in the determination of critical limits for related condi-
tions. That any one or other of them increases or decreases the
reference values at the receptor sites, and so does or does not
favour a developer, is in our opinion irrelevant. Just as by manip-
ulation a developer might be able to raise the background by
choice of data and function, so could any competent data analyst
find a function that would lower it by the same, or even greater,
amount. The difference is that an honest data analyst would be
well aware of this fact, report the uncertainty, and suggest allowing
for it in any decisions based on it.

Is there an alternative?
Given these scatter plots, there are at least three alternative ways
of reaching the representative values on which ETSU-R-97 relies.

(i) Locally Weighted Scatterplot Smoothing

First, professional statisticians would undoubtedly suggest
alternative ways of fitting and assessing the fit that would address
issues of model choice and the ‘messy’ character of the data. Of
these the most obvious is locally weighted scatterplot smoothing or
local regression (LOESS), that fits local models that derive their
form from the data themselves rather than having to be specified
a priori by the analyst is an approach that is widely used to isolate
the ‘signal’ from the ‘noise’ in this type of plot and (see for
example Cleveland, Grosse and Shyu, 1992). This type of
smoothing is available in several software packages, but it relies
on the user supplying a parameter that controls the degree to
which the data are smoothed and so is open to possible manipula-
tion by the analyst.

(ii) Direct use of mean values with ‘binned’ data 3

y=-0.021x +0.4936¢ - 1.7502¢+ 31.703
R?=056786
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Day 1 23.5 72

Day 2 20.9 58
Day 3 220 62
Day 4 234 73
Day 5 21.6 64
Day 6 23.4 73
Night 1 17.4 82
Night 2 16.5 69
Night 3 15.8 74
Night 4 17.7 80
Night 5 19.4 64

Night 6 19.8 70

1 ¢ tted 1o six different
receptors (1-6) for both day and night time conditions in a wind farm noise

assessment from eastern England.

£ Second, and much more transparently, referring back to the
original ETSU-R-97 recommendations we find a sentence (page
101) that indicates that the panel were aware of a simpler alterna-
tive, which is to smooth the data before undertaking the regres-
sion analysis:

Where there is considerable scatter in the data, it may be more
appropriate to bin the acoustic data into 1m/s bins before identi-
[fying a best fit model.

For reasons that we do not understand, this simple option
seems subsequently to have been totally ignored and in fact there
is no need whatsoever to undertake any regression analysis.
Figure 4 shows a summary of the data used to prepare Table 1 *
binned’ at the nearest whole number wind speeds and presented
as a sequence of stacked box plots.

In each graphic the vertical line shows the total range of the
data in each bin whilst the rectangle shows the inter-quartile
range and the horizontal line is at the median value for that bin.
This display has the merit of showing the very considerable scatter
that exists around any measure of the central tendency in each
wind speed bin. In every example we have examined such a
display would have been sufficient, and there is no need to go
further and use regression analysis on the binned means or
medians, but if there is an insistence on finding a ‘best fit
function the most appropriate shape seems obvious. Binning data
in this way has two disadvantages. First, it literally ‘throws away’
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Figure 4:: Stacked box bloié Ai%écﬁ whole number wind speed

information that could be of use and, secondly, it introduces a
dependence on the arbitrary boundaries of the bins. A clear
advantage is that, although it might make the choice of function
and variation around that function easier, each of the bins can be
carried forward, complete with their individual gauges of uncer-
tainty, for incorporation in the ETSU-R-97 assessment of noise
margins without any need to fit a function. Indeed, presentation
of boxplots for each integer wind speed together with the
predicted wind turbine noise on the same graph would have the
great merit of showing how safe the allowed headroom in ETSU-R-
97 would be for each and every receptor and time period.

(iii) The zero-gradient at the Y axis approach

In Section 5 we note that a simple constraint on the fitted curve
is provided by the observation that at the point it intersects the
background noise (vertical) axis, the rate of change of noise with
wind speed must be zero. This constraint is easy to apply if we
rely on polynomials of degree that are an even number, in practice
either a quadratic (p=2) or quartic (p=4).

Figure 5 shows results from data typical of background noise
as a function of wind speed. In the first plot is a conventional
quartic (p=4) polynomials fitted to these data. This is followed
by a second plot using a quartic function constrained to cross the
Y-axis with zero gradient. We would argue that this is a much
more plausible curve for these data which also gives a zero wind
background of just 17.5dBA. The loss of fit, as measured by the 2,
is negligible.

The advantages of this approach can be illustrated by
comparing it to the conventional approach for six ‘at risk’
receptors at a proposed site in eastern England with the results as
shown Table 4 for the constrained fits using exactly the same data
as measured and used by the applicant for each receptor site. In
every case the function fitted was a quartic, p=4, polynomial.

There are a number of features of note in the comparison of the
conventional and constrained results. First, according to the
applicants ES, using the standard method without any @zFn
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gradient constraint, the applicant’s curves all clearly overlay
the daytime data points just as the standard method illustrates in
Figure 5. However they generate wildly varying values for the
background noise at zero wind that span a range of 50dBA and
include physically impossible negative values. The night time
values using the standard approach are much more stable
covering a range of 4dBA but seem inappropriately high for what
is a very quiet rural location. As shown in Table 4, imposition of a
zero gradient at the Y-axis constraint has a marked and welcome
effect on both day and night time zero wind speed background
noise values at all six sites. There are several consequences.
During the day the effect is to stabilise them in the range 20.9 to
23.5dBA which, given the similarity of the locations, is much more
plausible. At night the same effect is seen, but now there is a
reduction to a barely measureable background of 16.5 to 19.8dBA.
Although in every case the constrained curve data R2 shown in the
final column will be necessarily less than that obtained with the
unconstrained method, this reduction in value is at most only 1 to
2%. Our view is that, by its use of simple physical reasoning, this is
the best of the three suggested options in this Section and for all
the cases we have examined, this easy approach to the curve
fitting process provides much more consistent estimates of the
‘zero wind’ background noise and a shape of curve that is in
accord with common experience.

Conclusion

In conclusion, we note that the variation in the fitted curves and
their impact on the values taken as representative of the back-
ground noise at each and every at risk receptor generates a
neglected, but very real, uncertainty in the entire ETSU-R-97
process. We have demonstrated that replacing the blanket recom-
mendation that a ‘best fit’ polynomial curve should be fitted to
summarise these data before comparison with the predicted
turbine noise by either a simple locally weighted average

y =-0.0091x* +0.1287 + 0.0202x2 - 2.2404
+24.213 R*=0.7843
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& Figu‘r"e’ 5: The standard ETSU-R-97 suggested approach compared with
application of a zero gradient constraint using typical background noise data

smoothing, a smoothing using the already binned data, a simple
set of boxplots of these binned data without any accompanying
function, or a curved constrained to intersect the Y-axis at zero
gradient results in a reduction in this uncertainty.

Our analysis does not of course include other uncertainties
related to the time period of the sampling of the sound data, cali-
bration and related instrumental errors in the meters used, the
type of turbines to be installed, variation in sound output from
nominally the same machinery, the noise prediction methodology
adopted (especially the allowance for ground absorption and/or
reflection), and the way that both the wind at hub height and 10m
AGL are adjusted to allow for the continuously variable wind
shear. Even quite modest estimates of all these uncertainties
suggests ‘worst case’ scenarios that could easily double or halve
the background at a receptor. Given that wind farm consents are
routinely given with headroom values in the operational range of
the turbines of a few decibels and do not recognise the uncertain-
ties that surround the estimates used, it seems inevitable that
breaches of any imposed planning conditions will occur. Since we
know of no case where noise nuisance has resulted in a consent
being denied, the reverse, that consents are being denied when
the same considerations of uncertainty should suggest the reverse,
does not apply. ©
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